ویژگیهای ترانسفورماتور خشک

ترانسفورماتور خشک دارای ویژگیهای منحصر بفردی است از جمله:

ادامه مطلب ...

نیروگاه مدرن Lotte fors

ترانسفورماتور خشک نصب شده در Lotte fors که بصورت یک ترانسفورماتور – ژنراتور افزاینده عمل می کند ، دارای ظرفیت 20 مگا ولت امپر بوده و با ولتاژ 140 کیلو ولت کار می کند. این واحد در ژانویه سال 2000 راه اندازی گردید. اگر چه نیروگاه Lotte fors نیروگاه کوچکی با قدرت 13 مگا وات بوده و در قلب جنگلی در مرکز سوئد قرار دارد اما به دلیل نوسازی مستمر، نیروگاه بسیار مدرنی شده است. در دهه 80 میلادی ، توربین های مدرن قابل کنترل از راه دور در ان نصب شد و در سال 1996، کل سیستم کنترل آن نوسازی گردید. این نیروگاه اکنون کاملاً اتوماتیک بوده و از طریق ماهواره کنترل می شود.

تکنولوژی

ساخت ترانسفورماتور فشار قوی فاقد روغن در طول عمر یکصد ساله ترانسفورماتورها، یک انقلاب محسوب می شود. ایده استفاده از کابل با عایق پلیمر پلی اتیلن (XLPE) به جای هادیهای مسی دارای عایق کاغذی از ذهن یک محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش کرده است.


تکنولوژی استفاده از کابل به جای هادیهای مسی دارای عایق کاغذی، نخستین بار در سال 1998 در یک ژنراتور فشار قوی به نام “ Power Former” ساخت ABB به کار گرفته شد. در این ژنراتور بر خلاف سابق که از هادیهای شمشی ( مستطیلی ) در سیم پیچی استاتور استفاده می شد، از هادیهای گرد استفاده شده است. همانطور که از معادلات ماکسول استنباط می شود، هادیهای سیلندری ، توزیع میدان الکتریکی متقارنی دارند. بر این اساس ژنراتوری می توان ساخت که برق را با سطح ولتاژ شبکه تولید کند بطوریکه نیاز به ترانسفورماتور افزاینده نباشد. در نتیجه این کار، تلفات الکتریکی به میزان 30 در صد کاهش می یابد.


در یک کابل پلیمری فشار قوی، میدان الکتریکی در داخل کابل باقی می ماند و سطح کابل دارای پتانسیل زمین می باشد.در عین حال میدان مغناطیسی لازم برای کار ترانسفورماتور تحت تاثیر عایق کابل قرار نمی گیرد.در یک ترانسفورماتور خشک، استفاده از تکنولوژی کابل، امکانات تازه ای برای بهینه کردن طراحی میدان های الکتریکی و مغناطیسی، نیروهای مکانیکی و تنش های گرمایی فراهم کرده است.


در فرایند تحقیقات و ساخت ترانسفورماتور خشک در ABB، در مرحله نخست یک ترانسفورماتور آزمایشی تکفاز با ظرفیت 10 مگا ولت آمپر طراحی و ساخته شد و در Ludivica در سوئد آزمایش گردید. “ Dry former” اکنون در سطح ولتاژ های از 36 تا 145 کیلو ولت و ظرفیت تا 150 مگا ولت آمپر موجود است.

ساخت ترانسفورماتور خشک

در ژوئیه 1999، شرکت ABB، یک ترانسفور ماتور فشار قوی خشک به نام “Dryformer “ ساخته است که نیازی به روغن جهت خنک شدن بار به عنوان دی الکتریک ندارد.در این ترانسفورماتور به جای استفاده از هادیهای مسی با عایق کاغذی از کابل پلیمری خشک با هادی سیلندری استفاده می شود.تکنولوژی کابل استفاده شده در این ترانسفورماتور قبلاً در ساخت یک ژنراترو فشار قوی به نام "Power Former" در شرکتABB به کار گرفته شده است. نخستین نمونه از این ترانسفورماتور اکنون در نیروگاه هیدروالکترولیک “Lotte fors” واقع در مرکز سوئد نصب شده که انتظار می رود به دلیل نیاز روزافزون صنعت به ترانسفورماتور هایی که از ایمنی بیشتری برخوردار باشند و با محیط زیست نیز سازگاری بیشتری داشته باشند، با استقبال فراوانی روبرو گردد.


ایده ساخت ترانسفورماتور فاقد روغن در اواسط دهه 90 مطرح شد. بررسی، طراحی و ساخت این ترانسفورماتور از بهار سال 1996 در شرکت ABB شروع شد. ABB در این پروژه از همکاری چند شرکت خدماتی برق از جمله Birka Kraft و Stora Enso نیز بر خوردار بوده است.

دمای جوش اب

سطح دریا (فشار بیشتر) به جوش می آید.

نقطه ی جوش آب در دمایی است که فشار بخار آن با فشار هوای محیط برابر باشد. از آنجا که فشار جو محیط همیشه در حال تغییر است بنابراین نقطه ی جوش آب نیز از یک روز نسبت به یک روز دیگر تغییر می کند.آب در حرارت 100 درجه سانتیگراد وقتی به جوش می آید که فشار هوای خارج در وضعیت استاندارد باشد.(فشار 1 اتمسفر)

جالبه بدونید :
در منطقه کیتو در اکوادور که 2700 متر(8800 فوت) بالاتر از سطح دریاست، آب در حرارت 90 درجه سانتیگراد به جوش می آید.
آنان که محیط فضل و آداب شدند * در جمع کمال شمع اصحاب شدند
ره زین شب تاریک نبردند برون * گفتند فسانه ای و در خواب شدند
ali reza 1111


عضو فعال



پست ها : 253
تاریخ عضویت: جمعه 31 تیر 1390 - 14:00
محل سکونت: جایی همین نزدیکی
بالا
Re: دمای جوش اب

برق مصرفی جهان چطور تامین می‌شود؟

در سال 2008 / 1387، مصرف برق مصرفی مردم جهان 20183 تراوات‌ساعت بود و پیش‌بینی می‌شود این مقدار در سال 2035 / 1414 به بیش از 35هزار تراوات‌ساعت برسد. آیا می‌دانید این مقدار برق چطور تامین می‌شود؟

نشنال‌جئوگرافیک با استفاده از پیش‌بینی‌های آژانس بین‌المللی انرژی، روش‌های تولید انرژی الکتریکی در سراسر جهان را به نمودار تبدیل کرده است. در این نمودار شما می‌توانید تولید انرژی شش منطقه را در دو بازه زمانی 2008 و 2035 مشاهده کنید، ضمن آن که در هر منطقه می‌توانید سهم منابع تولید انرژی شامل منابع غیرپاک زغال‌سنگ، نفت، گاز، انرژی هسته‌ای و منابع تجدیدپذیر هیدروالکتریک، زیست‌توده، باد، زمین‌گرمایی و خورشیدی را مشاهده کنید.
در سال 2008 / 1387 نزدیک به 68% از برق تولیدی جهان از سوخت‌های فسیلی تامین می‌شد و پیش‌بینی می‌شود این سهم در سال 2035 / 1414 به 55% کاهش یابد. البته این کاهش به نفع محیط‌زیست نخواهد بود، چرا که مصرف برق بشر 75درصد افزایش خواهد یافت و این، یعنی برق بیشتری (نسبت به امروز) از سوخت‌های فسیلی زغال‌سنگ و گاز تامین خواهد شد. اما خبر خوب این‌که سهم منابع تجدیدپذیر و هیدروالکتریک از 18% سال 2008 به بیش از 31درصد رد سال 2035 افزایش خواهد یافت.
با تغییر نشان‌گرهای تعبیه‌شده برای هر منبع تولید انرژی می‌توانید تاثیر تغییرات را در روشنایی شهری (که سهم اعظم برق مصرفی را تشکیل می‌دهد) مشاهده کنید. برای مشاهده این نمودار در ابعاد بزرگ می‌توانید

ترموکوپل

نگاه اجمالی

ترموکوپل یا کوپل ترموالکتریک ، نوعی مولد الکتریسته که با استفاده از ترموالکتریکی جریان الکتریکی ضعیفی ایجاد می‌کند. ترموکوپل از دو میله فلزی غیر هم جنس رسانا یا نیم رسانا ساخته شده است که از یک سر به هم جوش داده شده‌اند و دو سر دیگر آنها بوسیله حساس مانند گالوانومتر متصل است. با گرم شدن محل اتصال ، جریان ضعیفی از مدار عبور می‌کند.



بیان فیزیکی ترموکوپل

ترموکوپل ، دماسنج افتراقی (یا دیفرانسیلی) است که خروجی آن به صورت ولتاژ است. به بیان فیزیکی‌تر ، ترموکوپل حس کننده‌ای است که در آن از دو ماده با اثرهای زبک مختلف برای تبدیل اختلاف دما به اختلاف ولتاژ استفاده می‌شود. ولتاژ باز V12 چنین است:


V12 = ∫{SA(T) - Ss(T)}dT

که در آن (Sm(T اثر زبک یا توان گرمایی ماده m در دمای T و iT دمای ناحیه همدما است. برای مواد همگن و نواحی کاملا همه ما V12 به چگونگی تغییر دما بین T1 و T2 بستگی ندارد و فقط اختلاف دماست که اهمیت دارد. مثلا اگر از دو ترموکوپل یکسان استفاده کنیم که برای یکی از آنها وسط ماده B در دمای کوره‌ای داغ و برای دیگری وسط ماده B در دمای مایعی بسیار سرد قرار داشته باشد، ولتاژ حاصل در دو ترموکوپل یکسان خواهد بود.

آرایش کاربردی ترموکوپل

با رعایت تعدادی نکات احتیاطی همان نتایج آرایشی آرمانی را بدست خواهد داد. اول اینکه هیچگونه گرادیان دمای نباید در پیوند گاه A-B که در دمای T2 قرار دارد، موجود باشد. اگر مواد را به شکل سیم در آوریم و اتصال گرمایی خوبی در پیوندگاه و قسمتی از هر دو سیم با نمونه اندازه گیری شونده برقرار کنیم، این شرط برآورده می‌شود.


دوم از آنجا که سیم های مختلفی در T1 که ولتاژ آن اندازه گیری می‌شود قرار می‌گیرند. لازم است که T1 ناحیه دما با دمای مشخص باشد. پیشتر این شرط را با متصل کردن ترموکوپل ولت سنج به مخزنهای گرمایی مربع ، مانند مخلوط هم زده‌ای از یخ و آب یا مایع زمزاییک در حال جوش برآورده می‌کردند. ابزارهای جدید این اتصالها را در نواحی که دمای آنها به صورت الکتریکی کنترل می‌شود برقرار می‌کنند.

سوم اینکه لازم است توان گرمایی موادی که ترموکوپلی می‌دهند، بر اثر تغییر دما در گستره‌ای از دما که مورد اندازه گیری است یا بر اثر ناخالصیهایی که ممکن است در محیط اندازه گیری شونده موجود باشد، تغییر نکند. یکی از راههای ممکن برای نقص این شرط اکسید شدن مواد یا هر دو ماده است.

کاربرد آلیاژهای ترموکوپل

بکار بردن آلیاژهای فلزات واسطه به عنوان مواد تشکیل دهنده ترموکوپل همه شرایط را به خوبی برآورده می‌کند. ترموکوپلی که از دو آلپاژ یکی با توان گرمایی مثبت و دیگری با توان گرمایی منفی ساخته شده است. به ازای اختلاف دمای مشخص ولتاژ خروجی یا حساسیت بیشتری خواهد داشت.

ترموکوپل مرکب

ترموکوپل مرکب یا ترموکوبیل ، مجموعه‌ای از چند ترموکوپل است که از نظر گرمایی به صورت موازی و از نظر الکتریکی به صورت متوالی با یکدیگر متصلند، از ترموکوپلهای مرکب در مواردی استفاده می‌شود که به ولتاژهای بیشتری نیاز باشد. آشکارسازی اختلاف دمای ناشی از توان اپتیکی و طراحی چشمه‌های ولتاژ دو نمونه از این موارد است.

میدان الکتریکی

برای تعریف میدان الکتریکی در یک نقطه معین از فضا ، یک بار الکتریکی مثبت به اندازه واحد در آن نقطه قرار داده ، سپس مقدار نیروی الکتریکی وارد بر این واحد بار را به عنوان شدت میدان الکتریکی تعریف می‌کنند. بار مثبت را نیز به عنوان بار آزمون تعریف می‌کنند. به بیان دقیقتر می‌توان میدان الکتریکی را به صورت حد نسبت نیروی الکتریکی وارد بر یک بار آزمون بر اندازه بار آزمون ، زمانی که مقدار بار آزمون به سمت صفر میل می‌کند، تعریف کرد.

ادامه مطلب ...

تولید الکتریسیته

اولین فرایند در ارائه الکتریسیته به مصرف کننده هاست. سه فرایند دیگر انتقال توان الکتریکی، توزیع الکتریسیته و فروش الکتریسیته است.

اهمیت تولید الکتریسیته، انتقال و توزیع آن زمانی کشف شد که معلوم شد الکتریسیته برای تهیه گرما، روشنایی و توان مورد نیاز برای دیگر فعالیت های انسانی، مفید است. تولید الکتریسیته غیر متمرکز نیز زمانی ممکن شد که کارشناسان فهمیدند خطوط برق جریان متناوب می توانند الکتریسیته را با قیمت ارزان در طول فواصل بلند و توسط بهره برداری از مزیت قابلیت تبدیل ولتاژ با استفاده از ترانسفورماتورهای توان، انتقال دهند.

برای مدت 120 سال، الکتریسیته از منابع مختلف انرژی پتانسیل و به منظور فراهم آوردن انرژی فن آوری های بشر، تولید می شده است. اولین نیروگاه برق توسط چوب راه اندازی شد، در حالی که امروزه نیروگاه ها با نفت، گاز طبیعی، زغال سنگ، سیستم برق آبی و انرژی هسته ای و به میزان کمی با هیدروژن، انرژی خورشیدی، کنترل جزر و مد و ژنراتورهای بادی کار می کنند. تولید و توزیع الکتریسیته اغلب در دستان بخش خصوصی یا دولتی که خدمات رفاهی عمومی را در اختیار دارند، بوده است. در سالهای اخیر برخی دولت ها به عنوان بخشی از حرکتی برای اعمال فشار بازار به حقوق انحصاری، شروع به خصوصی سازی یا شرکتی کردن این خدمات رفاهی کرده اند. بازار الکتریسیته نیوزیلند مثالی از این نوع است.

تقاضای الکتریسیته را می توان به دو صورت ارضاء کرد. روش اول که تا کنون برای خدمات رفاهی به کار می رفته است، ساختن پروژه های بزرگ تولید و ارسال الکتریسیته لازم به اقتصادهای سوختی در حال رشد، است. بسیاری از این پروژه ها دارای تاثیرات زیست محیطی نامطلوب نظیر آلودگی هوا یا آلودگی تشعشعی و آب گرفتگی بخش وسیعی از زمین، هستند.

تولید پراکنده به عنوان روش جدیدی (روش دوم) برای برطرف کردن تقاضای الکتریکی، در نزدیکی مصرف کننده ها شناخته شده است. پروژه های کوچک تر پراکنده دارای خصوصیات زیر هستند:

ـ حفاظت در برابر خاموشی های برق ناشی از متوقف کردن نیروگاه های غیر متمرکز یا خطوط انتقال به منظور تعمیر، فریب بازار یا توقفهای اضطراری.

ـ کاهش آلودگی.

ـ اجازه دادن به بازیگران کوچک تر برای ورود به بازارهای انرژی.

روش های تولید الکتریسیته

روش های تبدیل توان های دیگر به توان الکتریکی

توربین های دوار که به ژنراتورهای الکتریکی متصل شده اند، اکثر الکتریسیته تجاری موجود را تولید می کنند. توربین ها عموماً توسط بخار، آب، باد یا دیگر مایعات به عنوان یک واسطه حامل انرژی، گردانده می شوند. پیل های سوختی که برای تولید الکتریسیته از مواد شیمیایی مختلفی استفاده می کنند، توسط برخی از مردم مناسب ترین منبع برق برای بلند مدت شناخته می شوند، خصوصاً اگر بتوان از هیدروژن به عنوان ماده تغذیه در این پیل ها استفاده کرد. اما به هرحال هیدروژن معمولاً تنها یک حامل انرژی است و بایستی توسط منابع توان دیگری ایجاد شود.

ژنراتورهای کوچک قابل حمل نیز عموماً توسط موتورهای دیزل کار می کنند که خصوصاً در کشتی ها، مکان های مسکونی دور افتاده و برق اضطراری استفاده می شوند.

منابع انرژی اولیه، بکار رفته در تولید انرژی الکتریکی

جهان امروز برای تولید انرژی بر زغال سنگ و گاز طبیعی تکیه می کند. هزینه های بالای مورد نیاز برای انرژی هسته ای و ترس از خطرات این انرژی، از دهه 1970م جلوی تاسیس نیروگاه های جدید هسته ای را در آمریکای شمالی گرفته است.

توربین های بخار را می توان توسط بخارهای ناشی از منابع زمین گرمایی، انرژی خورشیدی، مایعات، سوخت های فسیلی گازی و جامد، به راه انداخت. راکتورهای هسته ای از انرژی ناشی از شکافت اورانیوم یا پلوتونیوم رادیواکتیو برای تولید آزمایش‌های مربوط به گرما استفاده می کنند. این راکتورها اغلب از دو مدار بخار اولیه و ثانویه تشکیل شده تا یک لایه حفاظتی اضافی را بین محل قرار گرفتن سوخت هسته ای و اتاق ژنراتور قرار دهد.

نیروگاه های برق آبی از آبی که مستقیماً از توربین ها عبور می کند، برای راه اندازی ژنراتورها استفاده می کنند.

کنترل جزر و مد از نیروی ماه بر روی بدنه آب دریاها برای گرداندن یک توربین استفاده می کنند.
ژنراتورهای بادی از باد برای گرداندن توربین هایی که با یک ژنراتور مرتبط اند، استفاده می کنند.
نیروگاه برق آبی ذخیره شده با پمپ برای هم سطح کردن تقاضاها روی یک شبکه برق به کار می رود.

تولید الکتریسیته توسط هم جوشی آزمایش‌های مربوط به گرما هسته ای به عنوان راه حلی ممکن برای تولید الکتریسیته پیشنهاد شده است. در حال حاضر برخی موانع فنی و مسایل زیست محیطی در مسیر این راه وجود دارد که اگر برطرف شوند هم جوشی، یک منبع انرژی الکتریکی نسبتاً تمیز و بی خطر را تامین خواهد کرد. پیش بینی می شود که یک راکتور آزمایشی بزرگ «ITER) در سال 2005-2006 شروع به کار کند.

بهبود کارایی

نیروگاه های تولید مختلط «برق و گرمای ترکیب شده)، با استفاده از برق خورشیدی، سوخت های فسیلی، گازهای سنتزی، تراکم زیست یا زیست گاز به عنوان یک منبع سوختی، تولید الکتریسیته و آزمایش‌های مربوط به گرما را انجام می دهند. این نیروگاه ها می توانند به کارایی به میزان 80 درصد برسند اما انتظار می رود بسیاری از این نیروگاه ها که امروزه ساخته می شوند تنها به کارایی معادل حداکثر 55 درصد برسند. بخار گرم شده یک توربین را می گرداند و سپس گرمای اضافی برای گرم کردن فضاهای داخل ساختمان ها، فرآیندهای صنعتی یا گرم کردن گلخانه ها بکار می رود. تمامی مردم می توانند از گرمای توزیع شده از طریق یک طرح گرمایی منطقه ای بهره ببرند.

توانایی دستیابی به تولید سه گانه با استفاده از سوخت های فسیلی یا انرژی خورشیدی برای تولید گرما، الکتریسیته و سرمایش تبخیری نیز وجود دارد. این نیروگاه های ترکیبی بهترین نسبت تبدیل انرژی را بعد از نیروگاه های برق آبی دارند.

آرایه های کوچک فتو ولتایی، آسیاب های بادی و دوچرخه های مرتبط با یک توربین، همگی می توانند برای تولید الکتریسیته قابل حمل بکار برد.

اصلاحات الکتریکی در سرتاسر جهان در حال جدا کردن تولید الکتریسیته از مبانی کنترل شده حق انحصار انتقال و توزیع الکتریسیته است، بازار الکتریسیته را مشاهده کنید.

ابر رایانه چیست؟

ابر رایانه، رایانه‌ایست که به لحاظ سرعت محاسباتی جزو قدرتمندترین ماشین‌های زمان خود باشد.

 


ادامه مطلب ...